Facile phase transfer of gold nanorods and nanospheres stabilized with block copolymers

نویسندگان

  • Yaroslav I Derikov
  • Georgiy A Shandryuk
  • Raisa V Talroze
  • Alexander A Ezhov
  • Yaroslav V Kudryavtsev
چکیده

A fast route to transfer Au nanoparticles from aqueous to organic media is proposed based on the use of a high molecular mass diblock copolymer of styrene and 2-vinylpyridine for ligand exchange at the nanoparticle surface. The method enables the preparation of stable sols of Au nanorods with sizes of up to tens of nanometers or Au nanospheres in various organic solvents. By comparing the optical absorbance spectra of Au hydro- and organosols with the data of numerical simulations of the surface plasmon resonance, we find that nanoparticles do not aggregate and confirm the transmission electron microscopy data regarding their shape and size. The proposed approach can be effective in preparing hybrid composites without the use of strong thiol and amine surfactants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Temperature and Reaction Time on the Morphology and Phase Evolution of Self-assembled Cu7.2S4 Nanospheres Obtained from Nanoparticles and Nanorods Synthesized by Solvothermal Method

In this research, self-assembled copper sulfide nanospheres were synthesized by the solvothermal method and the effects of reaction parameters, including reaction time and reaction temperature on the morphology and phase evolution of copper sulfide nanostructures were investigated. For the identification of copper sulfide nanostructures, X-ray diffraction (XRD), infrared spectroscopy (FT-IR), f...

متن کامل

Co-assembly of block copolymers and nanorods in ultrathin films: effects of copolymer size and nanorod filling fraction.

Two-dimensional, hierarchical assemblies of nanorods were obtained by exploiting the structures afforded by block copolymers in ultrathin films. Under the appropriate conditions, the nanorods segregate to the film surface already upon casting the composite film, and organize with the block copolymer through phase separation. In this paper we compare the structures formed by CdSe nanorods of thr...

متن کامل

Facile fabrication of amphiphilic gold nanoparticles with V-shaped brushes from block copolymers with a trithiocarbonate group as the junction.

Amphiphilic gold nanoparticles grafted with V-shaped brushes (Au-V-brushes) were prepared by grafting a polystyrene-b-poly(ethylene oxide) (PS-b-PEO) block copolymer with a trithiocarbonate group as the junction to the Au surface. The obtained Au-V-brushes were subjected to solubility test and UV-vis, FT-IR, TEM and DLS characterizations. It is found that the Au-V-brushes are soluble in both wa...

متن کامل

Linear-dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery.

Elongated micelles have many desirable characteristics for cancer-drug delivery, but they are difficult to obtain since amphiphilic polymers form such nanostructures only within narrow composition ranges depending on their own structures. Herein, we demonstrated a facile fabrication of different nanostructures via drug content-controlled self-assembly of amphiphilic linear-dendritic drug conjug...

متن کامل

A single gold nanorod as a plasmon resonance energy transfer based nanosensor for high-sensitivity Cu(II) detection.

Plasmon resonance energy transfer (PRET) has been widely applied in the detection of bio-recognition, heavy metal ions and cellular reactions with high sensitivity, based on the overlap between the plasmon resonance scattering band of nanoparticles and the absorption band of the surface-modified chromophore molecules. Previous sensors based on PRET were all implemented on gold nanospheres with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018